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1. Lecture 1 : Hilbert schemes of surfaces in families

.
(1) Let p : S → M be a flat family of nonsingular projective surfaces over any
base M .

(a) Examples to keep in mind

• M is a point and S is a single surface,
• p : S →M is a P2 bundle over M ,
• p : S → M is the universal family of quasi-pol K3 surface with quasi-

polarization L.

(b) Let h : S[n]→ M be the relative Hilbert schemes of n points in the fibers
of p. The morphism h is smooth of relative dimension 2n. Let L → S be a line
bundle on the family of surfaces p : S → M . For example, the K3 family of (a)
above has a canonical choice L (up to normalization).

(c) Given p : S → M and L → S, we can construct the tautological rank
n vector bundle L[n] → S[n] as usual with fiber H0(Z,L) over the length n
subscheme Z of a fiber of p.

Let c(L[n]) be the total Chern class in A∗(S[n]) and let

Seg(L[n]) =
1

c(L[n])

Our main question is the following: How can we compute h∗(Seg(L[n]) in
A∗(M)?

Of course, we can also start with vector bundle B → S and ask to compute
h∗(Seg(B[n]) in A∗(M). The most natural formulation of the problem is to start
with an element of E of K∗(S) and ask to compute h∗(Seg(E[n]) in A∗(M).
The K-theoretic formulation captures also h∗(c(E[n]) in A∗(M) since c(E[n]) =
Seg(−E[n]).
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(2) Why do we want to compute h∗(Seg(E[n]) ?

(a) When M is a point, the answer is an integral over S[n]∫
S[n]

Seg(E[n])

and has been studied via the Heisenberg algebra (Nakajima’s theory of the coho-
mology of S[n]) by M. Lehn in 1999. He discovered there a nontrivial conjectural
formula for the answer when E = L is a line bundle which has been now proven
in the past few years by [MOP] for K3 surfaces and [Voisin] in general.

• In case, S is a K3 surface, we have complete results for all E in K∗(S) by
[MOP].
• In case S is arbitrary and E ∈ K∗(S) is of rank −2,−1, 0, 1, we also have

complete results (needs [MOP], A. Mellit, [Voisin]).
• Rank 2 is almost complete.

The geometric inputs have come from 3 very different directions

• The virtual class of Quot scheme on S by [MOP],
• Ideas of Reider/Lazarsfeld applied by Voisin
• Localization partition sums studied by Mellit.

For general E the question, even for M is a point, is open.

(b) The first result on these questions after Lehn’s paper of 1999 was [MOP] in
2015. There the question of calculating h∗(Seg(L[n]) in A∗(M) for the universal
family p : S → M of quasi-polarized K3 surfaces arose naturally in the study of
tautological relations on the moduli of K3 surfaces. To explain the relevance, we
first ask: what are tautological classes on M ? Here, we start with any family
p : S →M and and a line bundle L→ S. Let

κ[a, b, c] := p∗(c1(S)ac2(S)bc1(L)c) ∈ A∗(M)

Here c1(S) and c2(S) denote the Chern classes of the relative tangent bundle of
the family p : S →M .

A tautological class on the base M is a polynomial in the classes

κ[a, b, c]a,b,c≥0

Theorem 1.1. (Formulation already implicit in [MOP])
h∗(L[n]) in A∗(M) is given by universal polynomials in the classes κ[a, b, c].

The Quot scheme method of [MOP] required the calculation of h∗(L[n]) in
A∗(M) for the moduli space of K3 surfaces as a step in writing relations among
the κ[a, b, c] classes on M .

Comments on Theorem 1:
(i) The result shows h∗(E[n]) is a tautological class.
(ii) Universal polynomial here means that the polynomial does not depend

upon p : S → M or E → S Theorem 1 stated for any E ∈ K∗(S) takes the
form: h∗(E[n]) ∈ A∗(M) is given by universal polynomials in the classes κ[a, b, C]
depending only on the rank of E. Here C is vector indexed by all the Chern
classes of E.
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(iii) While a proof has not (yet) been written, the method is standard. Use the
geometric arguments of Lehn’s 1999 paper (studied there when M is a point) and
apply them to the whole family h : S[n]→M .

(c) A parallel exists in the more developed study of tautological relations in
the moduli space of curves. Let

p : C →Mg

be the universal curve over the moduli space of nonsingular genus g curves. Let
h : C[n] → Mg be the universal Hilbert scheme of points. Push-forward calcu-
lations of, for example, h∗(wC [n]) ∈ A∗(Mg) play an import role in the study of
tautological relations. The h∗ calculation for C[n] is much easier than for S[n].

A fourth example (in addition to the three of part (1.a) for a family of surfaces
is constructed from curves. Let C1 → Mg1 and C2 → Mg2 the universal families
over the moduli spaces of nonsingular curves of genus g1 and g2. Let

p : S = C1 × C2 →Mg1 ×Mg2 = M

Then Theorem 1 says, for example, that h∗(E[n]) is tautological on Mg1 ×Mg2 ,
where E is obtained from the Hodge bundles and relative dualizing sheaves of the
two moduli of curves.

(3) The toric case
(a) Theorem 1 tells us where the answer to our main question lives. But how

can we calculate?
Answer: Use toric geometry.
The simplest case is to let the surface be S = C2 the complex plane. Of course

S is not compact. To compensate for the non-compactness, we must study the
geometry equivariantly with respect to a torus action. Let the toruc T = C∗×C∗
act on C2 with tangent weights s, t at the origin. Let T also act on the trivial
line bundle L = OC2 → C2 equivariantly with weight w. A localization vertex for
the Segre class push-forward is the following:

Z(q, s, t, w) :=
∞∑
n=0

qn
∫
S[n]

Seg(L[n]) (1.1)

This generating is defined by Atiyah-Bott localization with respect to T and is
entirely explicit. When T act on C2[n], the T -fixed points are given by monomial
ideals which are viewed as partitions in the plane. So we write

Z(q, s, t, w) =
∑
σ

q|σ|ResσSeg(L[n]) (1.2)

where the sum is over all partitions σ (including the empty partition which con-
tributes a leading 1 to the sum). The localization residue is

ResσSeg(L[n]) =
1

e(Tanσ)c(O[n]⊗ w)
(1.3)

where Tanσ is the standard T -representation on the tangent space of C2[n] at
the T -fixed point σ (given by arm and leg lengths) and O[n] is the T -representation
the structure sheaf of the associated scheme.
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(b) Since Z starts with 1, we can take the log,

F = Log(Z). (1.4)

Theorem 1.2. The logarithm F has the follow basic structure

F =
F0

st
+
F1

st
+
F2

st
+ ... (1.5)

where F0(q) is just a series in q, F1(q, s, t, w) is of degree 1 in s, t, w, F2(q, s, t, w)
is of degree 2 in s, t, w, ... and the Fi are of course symmetric in s, t.

So E0(q) is really just 1 q-function;
E1(q) is 2 q-functions (coeffs of s+ t and w);
E2(q) is 4 functions (coeffs of (s+ t)2, st, (s+ t)w, w2), etc.

There are 2 proofs of Theorem 1.2

• Mellit has a proof which directly depends upon analysis of the localization
sum defining Z.
• There is a second proof by geometry of log Hilbert scheme which I will

explain.

Finally, I note that Z here is not unrelated to the Nekrasov partition function
— the new aspect here is the inclusion of the Segre class.

(c) How does Theorem 1.2 provide a calculation of h∗(Seg(L[n]) in A∗(M) for
all families p : S →M and line bundles L→ S ?

The answer is given in a few steps.

(1) Take the expansion of F = log(Z) in Theorem 1.2 and throw away F0 and
F1:

F# =
F2

st
+
F3

st
+
F4

st
+ ... (1.6)

(2) Rewrite each term with κ classes. Start with F2 which is

∗(s+ t)2

st
+ ∗st

st
+ ∗(s+ t)w

st
+ ∗w

2

st

where the 4 instances of ∗ denote 4 series in q (all without constant term).
Write this as

G2 = ∗κ[2, 0, 0] + ∗κ[0, 1, 0] + ∗κ[1, 0, 1] + ∗κ[0, 0, 2] (1.7)

where the q-series are the same as for F2. Similarly, write G3, G4, ... start-
ing with F3, F4, ... by

(s+ t)⇒ c1(S)

st⇒ c2(S)

w ⇒ c1(L)

(3) Let G = G2 +G3 +G4 + ... where the right hand side is now a polynomial
in the kappa classes κ[a, b, c]a,b,c≥0.

Actually, only the κ classes of codim ≥ 0 in M appear (since we have
thrown out the negative dimensional kappas).

(4) Let p : S →M be a family of nonsingular project surfaces, and let L→ S
be a line bundle.
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Theorem 1.3. We have the equality

Exp(G) =
∞∑
n=0

h∗(Seg(L[n])

Comments. The proof of Theorem 1.3 uses

• Theorem 1 — so we need only to find the universal formula
• Theorem 2 — which gives the specialization to the projective toric case

and a bit more.

The more is because projective toric surfaces, unfortunately do not fully explore
the tautological classes. To see this, consider the following exercise.

Let S be a projective toric surface with T -action. Prove the following formula∫
S

c1c2 = 0

in T -equivariant cohomology.
As a result, κ[1, 1, 0] will always be zero in the projective toric case (and its

contribution will be lost). A nice way to repair the defect in projective toric
geometry is to consider toric surface relative to toric divisor (log toric situation).
Then the issue can be overcome.

(v) The localization strategy, including Theorems 1.2 and 1.3, are valid for K-
theory classes of all ranks (not just the line bundle case discussed above). The
statements and methods are the same.

(d) The initial F0 term has a very nice formula.

Theorem 1.4. (Mellit) Consider the rank = r case, so

Z(q, s, t, w1, ..., wr) =
∑
σ

q|σ|
1

e(Tanσ)c(O[n]⊗ w1 + ...+O[n]⊗ wr)
(1.8)

then the leading F0

st
term of F = logZ is

F0 = q +
∑
n≥2

qn(−1)(n+1)r(r + 1)(n−1
(
(r+2)n−3
n−2

)
n2(n− 1)

(1.9)

Mellit also has results on F1. Both F0 and F1 are terms corresponding to
”negative degree” kappa classes and do not play a direct role in the original
question (they are removed in step (c.1) above).

(e) Consider the rank 0 case (which is not at all trivial). But a special case of
rank 0, when E is actually 0, is easy to understand. Then the parition function is

Z(q, s, t) =
∑
σ

q|σ|
1

e(Tanσ)
(1.10)

Recall the tangent representation Tanσ is∑
Boxes b of σ

(Leg(b)+1)s−Arm(b)t)+
∑

Boxes b of σ

−Leg(b)s+(Arm(b)+1)t (1.11)

While the sum defining Z looks complicated, the answer is simple Z(q, s, t) =
Exp( q

st
) .
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Proof (Using the GW/DT correspondence of MNOP)
Consider C2 × P1. Then the DT theory of ideal sheaves in curve class d[P1]

starts with
ZC2×P1,DT = qdCoe(Z, qd) + ...

since the leading term corresponds to the Hilbert scheme of d points of C2. The
GW/DT correspondence here takes the form

(−q)dZDT = (−iu)2dZGW

where ZC2×P1,GW is the Gromov-Witten partition function of C2×P1 is curve class
d[P1].

For simple dimension reasons, the connected domain components of maps which
can contribute to ZGW are of genus 0 and map with degree 1 to P1. Hence,

ZGW =
u−2d

d!

is the entire partition function. Using the GW/DT correspondence,

(−iu)2dZGW = (−1)d
1

d!
(st)−d = (−1)dCoeff(Z, qd) + higher order (1.12)

We conclude

(1) Coeff(Z, qd) = 1
d!

(st)−d

(2) There are no higher order terms.

The claim Z = Exp( q
st

) follows from (1). Conclusion (2) is an interesting extra
property.

2. Lecture 2 : Hilbert schemes of log surfaces

.
(1) Let S be a nonsingular projective surface and let D ⊂ S be a nonsingular
projective curve. Let S/D[n] be the Hilbert scheme of points of a surface S
relative to D.

• For the usual Hilbert scheme of point S[n], the supports move freely in
S. For S/D[n] the space bubbles when the supports head to the relative
divisor D.
• While S[n] is very familiar, the log geometry S/D[n] has been much less

studied
• For those familiar with relative DT, stable pairs, etc. S/D[n] is a special

case of the construction
• For computation of the Betti numbers of S/D[n], see the Princeton Ph.D.

thesis of I. Setayesh

(2) The main questions and most of the discussion of Lecture 1 can be carried
out for the relative geometry S/D.

An important example is S = P1 × C with D = ∞× C. Then S/D carries a
T = C∗×C∗ action extending the torus action on C2 = S−D. Here, T acts with
weight s, t at the origin (0, 0) and with weights −s, t at (∞, 0).
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Let T also act on the trivial line bundle L = OS → S equivariantly with weight
w. We will now study the partition function

ZS/D(q, s, t, w) =
∞∑
n=0

qn
∫
S/D[n]

Seg(L[n]) (2.1)

which nicely factors as ZS/D = Zvert ·Zrel where Zvert is the localization vertex at
(0, 0) from Lecture 1 and Zrel is the localization vertex associated to the rubber
at (∞, 0).

Why is the relative geometry S/D here better than the the naked vertex Zvert
from Lecture 1?

Answer: S/D is compact in the s direction related to the first C∗ factor of T ,
the q-coefficients of ZS/D are polynomials in s, while the q-coefficients of Zvert
have denominators in s, t, To use the polynomality of ZS/D, we must of study the
series Zrel via the rubber calculus.

See [MNOP2] for a parallel study in the case of DT theory of 3-folds

(3) Rubber calculus
The T fixed locus of S/D[n] with all points over∞ in P1 is not isolated. Rather,

the T -fixed locus is the rubber moduli space R[n] of dimension 2n−1. The rubber
space R[n] is the Hilbert scheme of points of P1 × C relative to both 0 × C and
∞×C (with bubbling when the the supports meet either) up to the C∗-scale. It is
the C∗-scale equivalence which brings the dimension down to 2n−1. Localization
gives the formula

Zrel = 1 +
∞∑
n=1

qn

∫
R[n]

Seg(L[n])

(−s−Ψ)
(2.2)

where L[n] is the tautological bundle on the rubber and −Ψ is the tangent line
associated to the relative divisor.

We can expand Zrel as a series in s:

Zrel = 1 +
Z1

−s
+

Z2

(−s)2
+

Z3

(−s)3
+ .... (2.3)

The crucial equation of the rubber calculus is

DZk = Zk−1DZ1 ∀ k ≥ 2 (2.4)

Some comments

(1) The operator D is defined as D = q d
dq

.

(2) The equation comes from producing a section of the cotangent line Ψ.

The solution to the rubber differential equation is

Zk =
Zk

1

k!

so we have

Zrel = exp(−Z1

s
)

And what is Z1 ?
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By definition, Z1 is exactly the integral of Seg(L[n]) over R[n],

Z1 =
∞∑
n=1

qn
∫
R[n]

Seg(L[n]) (2.5)

Since the first C∗ factor of T does not act on R[n], Z1 has no s-dependence (Z1

depends only on t, w). Since w acts only on the line bundle L, Z1 is polynomial
in w.

Conclusion:

LogZrel = −Z1

s
and has exactly simple poles in s and no poles in w.

(4) Vertex analysis
By geometry, the q-coefficients of ZS/D are polynomial in s
⇒ the q-coefficients of LogZS/D are polynomial in s since

LogZS/D = LogZvert + LogZrel

, the q-coefficients of LogZvert must have at most simple poles in s (and no poles
in w). since LogZvert is symmetric in s, t, the q-coefficients of LogZvert must have
at most simple poles in t.

We can write

Log(Zvert) =
F0

st
+
F1

st
+
F2

st
+ ... (2.6)

The geometric proof of Theorem 2 is now complete.

(5) Further comments.
(a) We can calculate Z1

s
as exactly the polar part of LogZvert. Since we can

calculate LogZvert by localization, we have a method of computing∫
R[n]

Seg(L[n])

(b) Since LogZvert has at most simple poles in t,
∫
R[n]

Seg(L[n]) must also have

at most simple poles in t. We conclude

•
∫
R[n]

Seg<2n−2(L[n]) = 0
•

∞∑
n=1

qn
∫
R[n]

Seg2n−2(L[n]) = F0

where F0 is determined in Theorem 4 of Lecture 1,

An interesting question is to find a direct geometric approach to (i), (ii), and
the computation of the higher Segre classes over rubber.

(6) Compact surfaces
Let S be a nonsingular projective toric surface with a T -action. Using localiza-

tion, Theorem 2 immediately implies Theorem 3. In fact, using further localization
analysis, we can prove the corresponding statement for relative geometries in the
toric case.
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Let S be a nonsingular projective toric surface, and let D be a nonsingular
toric divisor. Then, Theorem 3 holds for the T -equivariant theory of S/D with
the rules

(s+ t)⇒ c1(S/D)

st⇒ c2(S/D)

w ⇒ c1(L)

Here c1(S/D) and c2(S/D) are the Chern classes of log tangent bundle of S/D —
dual to the bundle of holomorphic differentials Ω1

S(D) with log poles along D.

(7) Sketch of Proof of Theorem 3 in all cases.
(a) We need Theorem 1 for families of log surfaces. The statement is unchanged

(with the relative tangent bundle of the family replaced by the relative log tangent
bundle of the log family).

(b) Using (a), we can determine the universal polynomials of Theorem 1 using
families of log surfaces.

(c) While Theorem 3 for the T -equivariant theory of nonsingular projective
toric surfaces was not enough to determine the universal polynomials, Theorem 3
for the T -equivariant theory of nonsingular projective log toric surfaces is enough.

(8) A fixed surface S
Let S be a fixed nonsingular projective surface with a nonsingular divisor D.

Via Theorem 3, we have

ZS(q) = Exp(A1c
2
1 + A2c2 + A3c1.L+ A4L

2) (2.7)

So the Segre integral question amounts exactly to determining the 4 q-series
A1, A2, A3, A4. Also

ZS/D(q) = Exp(A1c1(S/D)2 + A2c2(S/D) + A3c1(S/D).L+ A4L
2) (2.8)

for the same functions.
What are these functions? We will see in Lecture 3.

3. Lecture 3 : Formulas and proof for K3

.
(1) Our original question was the following:

Let p : S → M be a family of nonsingular projective surfaces over a base M ,
and let E be a K-theory class on the total space S.

Question: What is h∗(Seg(E[n])) ∈ A∗(M) ?
An answer was given in term of universal formulae in tautological classes via

the associated localization vertex. We ask here for much more explicit answers.
There are 3 measures of difficulty for the question

1: Codimension in M — the higher the codimension, the more complicated
the formula. Codimension 0 concerns integration over a Hilbert scheme of
points of a fixed surface and is the simplest
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2: Rank of the K-theory class E — ranks equal to 0 or near 0 are the
simplest.

3: Complexity of the surfaces in the family — Abelian surfaces tend to be
simplest, followed by K3 surfaces. Toric surfaces are of no advantage for
the formulas (but toric surfaces can help in proofs).

(2) The complete answer to the question in codimension 0, all rank r, for K3
surfaces is known via [MOP].

a: Let S be a K3 surface and let E in K∗(S) be of rank r
∞∑
n=0

qn
∫
S[n]

Seg2n(E[n]) = A(q)(c1(E)2−c2(E))B(q)(χ(c1(E)))C(q) (3.1)

where

χ(c1(E)) =
1

2
c1(E)2 +

1

2
c1(E)c1 +

1

21
(c21 + c2) =

1

2
c1(E)2 + 2

A = (1 + (r + 1)x)(r+1)(1 + (r + 2)x)(−r)

B = (1 + (r + 1)x)(−r−2)(1 + (r + 2)x)(r+1)

C = (1 + (r + 1)x)((r+2)2)(1 + (r + 2)x)(−(r+1)2)(1 + (r + 2)(r + 1)x)(−1)

q = x(1 + (r + 1)x)(r+1)

b: If we write the solution in the language of Lectures 1 and 2, we must take
the logarithm:

c1(E)2 Coeff of F2 = LogA+
1

2
LogB

c2(E) Coeff of F2 = −LogA

(st) Coeff of F2 =
1

12
LogB +

1

24
LogC

The K3 results give no information on the (s + t)2 Coeff of F2 and the
(s+ t)c1(E) Coeff of F2

c: Voisin’s proof in codimension 0, rank r = 1, for K3 surfaces is elegant. I
give her complete argument here.
• Let (S, L) be a K3 surface with a line bundle L with L2 = 2l. Using

the general structure result (see Theorem 3 of Lecture 1),
∞∑
n=0

qn
∫
S[n]

Seg2n(L[n]) = A(q)24B(q)2l

for q-series A and B. By calculating the n = 1 case by hand,

B(q) = 1 + q + ...

We therefore see that
∫
S[n]

Seg2n(L[n]) is a polynomial of degree n in

l with leading coefficient 2n

n!
.

The result of [MOP] is that∫
S[n]

Seg2n(L[n]) = 2n
(
l − 2n+ 2

n

)
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which is in fact a polynomial of degree n in l with the correct leading
coefficient. In order to prove the [MOP] evaluation, Voisin needs only
to prove the vanishing for n > 0∫

S[n]

Seg2n(L[n]) = 0

for the n values l = 2n − 2, 2n − 1, ..., 3n − 3, since the degree n
polynomial is uniquely determined by these n roots and the leading
coefficient.
• We switch notation now to L2 = 2g − 2, so g = l + 1 matches the

notation of part (3.a) above. Let (S, L) further satisfy three more
conditions
(i) L is primitive,
(ii) Pic(S) is rank 1 generated by L,
(iii) g > 0.
By (iii), L⊥ has no sections.
• Let P(L[n]∗) → S[n] be the projective bundle, and Let OP(1) →
P (L[n]∗) be the tautological bundle of the polarization. An elemen-
tary exercise shows

H0(P(L[n]∗), OP(1)) = H0(S[n], L[n]) = H0(S, L)

and these spaces are of dimension g + 1.
(i) We obtain a rational map

w : P(L[n]∗)→ Pg

via the complete space of sections of OP(1).
(ii) The Segre class is recovered via the intersection product∫

P(L[n]∗)
c1(OP(1))3n−1 =

∫
S[n]

Seg2n(L[n])

(iii) Main Claim: if g > 2n − 2, then L[n] is generated by global
sections. Let us assume the Main Claim for now to see how the
vanishing is implied.
Ifg > 2n−2⇒ L[n] is generated by global sections w : P(L[n]∗)→ Pg
is an actual morphism.
if 3n−1 > g, then

∫
S[n]

Seg2n(L[n]) = 0 by (ii). So
∫
S[n]

Seg2n(L[n]) =

0 for precisely the range g = 2n−1, 2n, ..., 3n−2 which is exactly the
[MOP] vanishing range.
• Proof of the Main Claim (closely related to older results of Lazarsfeld).

Let g > 2n − 2 and assume L[n] is not globally generated. We con-
struct a contradiction. Let [Z] in S[n] be a witness to the failure of
global generation. Then,

H0(S, L)→ H0(S, L|Z)

is not surjective. Hence H1(S, L⊗IZ) is not zero. Using Serre duality,
Ext1(IZ , L

∗) is also not zero, so we have a non-split extension

0→ L∗ → E → IZ → 0
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We first note that Hom(E,L∗) = 0. If h ∈ Hom(E,L∗) then the
composition L∗ → E → L∗ must be zero (or else the extension splits),
so h induces a map IZ → L∗.
But the latter would give a section of L∗ (by Hartogs) which is im-
possible, so h = 0. The contradiction will come by constructing a
non-trival map E → L∗. We calculate chi(E,E) by Riemann-Roch to
be 2g + 6− 4n = 2(g − 2n+ 2) + 2 > 2.
Therefore, there exists a non-trivial element f ∈ Hom(E,E) which is
not proportional to the identity Id : E → E. By a standard eigenvalue
argument, we may assume the sheaf Im(f) ⊂ E has generic rank equal
to 1. Let F = Saturation of Im(f) in E. Then we obtain a second
exact sequence

0→ F → E → Q→ 0

where both F and Q are torsion free of generic rank 1.
Consider first F . Since F is torsion free of rank 1, we have an injection
F → F ∗∗ where F ∗∗ = Lk is locally free (remember L generates
Pic(S)). Since

E → F → F ∗∗ = Lk

, we have a non-trivial map E → Lk. Since Hom(E,L∗) = 0, we
conclude k ≥ 0. Then F = IW ⊗ Lk≥0.
Next, we use the extension

0→ L∗ → E → IZ → 0

Since F sits in E and does not map to L∗ (since k ≥ 0), F must have
a non-trival map to IZ . Hence, k ≤ 0, so k = 0.
Putting the above together, we have the extension

0→ IW → E → Q→ 0.

Finally, Q is also torsion free of rank 1, so we have an injection Q→
Q∗∗ and a non-trival map E → Q→ Q∗∗.
What is the line bundle Q∗∗ ? Since det(E) = L∗ by the original
extension

0→ L∗ → E → IZ → 0

and det(IW ) is trivial, Q∗∗ must be L∗. So we have constructed a
non-trivial map E → L∗ which is a contradiction. QED

(4) The formulas of Lehn’s conjecture concern codimension 0, rank r = 1, and
all S.

Let S be a nonsingular projective surface and let L in K∗(S) be of rank 1. Given
the series already determined in (2) from the K3 surface specialized to r = 1, we
need only the Coeffs of F2 corresponding to (s+ t)2 and (s+ t)c1(L).

In total we have:

c1(L)2 Coeff of F2 =
1

2
Log(1 + 2x) (3.2)

Comments:
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• The above formulas are strictly more than Lehn’s conjecture of 1999 which
only considered the case where L is a line bundle on the surface S. The 5
series solve the Segre class question for every rank 1 element L of K∗(S).
For a line bundle L, c2(L) = 0 so the second series does not appear in
Lehn’s proposal
• The proof use K3 + an extension of Voisin’s argument for K3 to the blow-

up of K3 in a single point (see her paper).
• Can we find a straight localization proof?

(5) Lehn’s conjecture is the complete answer for a fixed surface S and E in
K∗(S) of rank 1 We also have complete answers for a fixed surface S and E in
K∗(S) of rank −2,−1, and 0.

(a) In rank -2, three of the 5 functions come from the K3 result. The remaining
2 functions come from the following simple geometry.

If E = [−B] where B → S is a rank 2 bundle with a transverse section, then

∞∑
n=0

qn
∫
S[n]

Seg(E[n])

=
∞∑
n=0

qn
∫
S[n]

c(B[n])

= (1 + q)(c2(B)).

(3.3)

The above geometric calculation holds for all rank 2 bundles B and all S, so
both c1c1(E) and c21(E) can be probed.

(b) In rank -1, three of the 5 functions come from the K3 result. The remaining
2 functions come from the observation that when E = [−L] where L→ S is a line
bundle,

∞∑
n=0

qn
∫
S[n]

Seg(E[n]) =
∞∑
n=0

qn
∫
S[n]

c(L[n]) = 1

since the integrals over S[n] vanish for n > 0 for dimension reasons. The above
geometric calculation holds for all line bundles L and all S, so both c1(L) and c21
can be probed.

(c) In rank 0, three of the 5 functions come from the K3 result. One of the
remaining 2 functions come from the observation that when E = [L−L], we have

∞∑
n=0

qn
∫
S[n]

Seg(E[n]) = 1

for dimension reason. Determining the last function in rank 0 is via Mellit’s
localization analysis (much less trivial than the geometric constraints discusses
above). In rank 2, a complete conjecture was found by MOP (unpublished), but
at the moment requires either further geometry or further localization analysis
(both approaches are likely to succeed). The last 2 functions in rank 2 are much
more complicated than the in the rank -2,-1,0, and 1 cases — and suggest closed
forms for all ranks will be difficult to find explicitly. I would hope for some
recursive structure instead.
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